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A pointing error model is used in the antenna calibration process. Data from space-
craft or radio star observations are used to determine the parameters in the model. How-

ever, the regression variables are not truly independent, displaying a condition known as

multicollinearity. Ridge regression, a biased estimation technique, is used to combat the

multicollinearity problem. Two data sets pertaining to Voyager 1 spacecraft tracking

(days 105 and 106 of 2987) were analyzed using both linear least squares and ridge

regression methods. The advantages and limitations of employing the technique are pre-

sented. The problem is not yet fully resolved.

I. Introduction

A pointing error model is used in the antenna calibration

process to compensate for systematic error sources. Data from

spacecraft (s/c) or radio star observations are used to deter-

mine the parameters in the model. The model parameters are

then used to generate a systematic error correction table for

accurately pointing the antenna. The pointing error modeling

approach used was originally devised by optical astronomers

and subsequently adapted by radio astronomers for RF anten-

nas. The model is based on logical, expected physical behavior

of the antenna and has been successfully applied to many

radio astronomy facilities: the Bonn 100-m Az-E1 antenna

[1] and the Haystack 37-m Az-E1 antenna [2]. The complete

pointing error model for an antenna is a sum of individual
error functions. Table 1 shows the individual error sources and

the elevation and cross-elevation (or, depending on the antenna

mount, declination and cross-declination) error functions used
to develop a systematic error correction table ([1], [2] and [3]

give a more in-depth description of the parameters).

When modeling a system, one may select the model purpose

to fall into one of three main categories: explanation, variable

selection, or prediction. If the model is explanatory, then it

represents the y in terms of the x's and explains how the x's

affect the y. Variable selection techniques should be used

when the goal is to determine which variables from a group of

variables are important in determining the optimal model for

y. This selection of variables could provide the best fit, the

simplest form of the model, or both. Prediction, or forecast-

ing, techniques estimate the output,y, at previously unobserved

values of inputs, x.

The current pointing error model used in the DSN is of the

explanatory type, and the parameters P are determined by per-

forming a linear least squares fit on offset data collected from

s/c or radio star observations. Currently, the regressor variables

are not truly independent and, rather, display redundant infor-

mation-a condition known as multicollinearity [4]. Multi-

collinearity results in limitations on the ability of an ordinary
linear least squares fit to provide stable and accurate variables.
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It is therefore desirable to study alternate techniques for

parameter estimation. Ridge regression is a biased estimation

technique for combating the multicollinearity problem. This

article reviews the use of the ridge regression technique and

demonstrates the advantages and limitations of its uses for

systematic error correction development.

II. Review of Regression Analysis

Suppose that, in an experiment, values of the dependent

variable y are observed, each corresponding to a particular

value of an independent variable x. A straight line representa-
tion of the y = y(x) data would have the form

Y = #o + #1x + e (1)

where e is the model error. Equation (1) is a simple linear
regression model since it contains a single regressor variable,

x, and is linear in x.

The above linear regression of y upon a single variable x
can be extended to the multiple linear regression model

Yi = [Jo + _lXli + [J2x2i +"" + _kXki + ei (2)

where i = l, 2 ..... n (n _ k + 1), ei is a conceptual random
model error assumed to be uncorrelated for each observation

(having a zero mean and a constant variance o2), x_i are the

independent variables (or regressors), Yi are the dependent
variables (or response variables) and are the true responses,

and/_k are the unknown regression parameters. One equation
can be written for each observation, and the error term e

allows the model to be an equality. In matrix terms, Eq. (2)
becomes

y = t_x + e (3)

Since the regression terms/_ are unknown, let the least

squares estimator for these coefficients be b k. These estimators
should satisfy the following equation:

_i = b o + blXil +... + bkxik (4)

where _i are the model's estimated (or fitted) value to Yi of

Eq. (2). Since Eq. (4) contains only known terms, it does not

contain the conceptual terms er

If the initial model was accurate, then the difference be-

tween Yi and _i should be small. The difference or residual,

r i, between the actual values and the fitted values is

,, = y,-._, (s)

The method of least squares chooses bik values so that
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i= 1

is minimized. The estimates satisfy the following matrix equa-
tion [4], [5]:

_b = (X'X) -1 X_y (6)

where X' is the transpose of X. When the regressor variables

are centered (made dimensionless relative to a mean value),
X'X is then in correlation form and will be written as X*'X*.

III. Multicollinearity

Multicollinearity exists when the regressor variables are

empirically correlated, affecting the computation of _b, which
involves the X'X matrix. When this situation exists, no conclu-
sions can be drawn as to the individual roles of the variables.

If multicoUinearity is "severe," then the coefficients may

(1) be the wrong size (too large in magnitude); (2) have the
wrong sign; or (3) be unstable due to ill-conditioned matrix

computations (i.e., small changes in the y's or x's lead to large
changes in the coefficients). Multicollinearity will also inhibit

the ability to predict.

Diagnostics can be performed to evaluate the extent of the

multicollinearity problem. Large values in the correlation

matrix are one indication of multicollinearity, but this obser-
vation only shows pairwise correlations, not correlations that

exist between more than two variables. Variance Inflation

Factors (VIFs) are another means of identifying multicollin-
earity. VIFs are the diagonal elements of the inverse of the

correlation matrix and represent the inflation that each regres-

sion coefficient experiences above the ideal (identity matrix).
VIFs are considerably more useful for multicollinearity detec-

tion than simple correlation values because they give a direct

measure of multicoUinearity and tell the user which coeffi-

dents are adversely affected and to what extent. As a rule of

thumb, VIFs greater than 10 indicate that a severe multicol-

linearity problem exists. Table 2 gives a sample analysis of a

set of conical scanning (conscan) offset data (collected during

a Voyager 1 track on the 105th day of 1987) that exhibits a

multicollinearity problem. Correlation values of zero mean no
correlation and +1.0 means full correlation. The VIF data

from Table 2 indicates a severe multicoUinearity problem.
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IV. Ridge Regression

Ordinary least squares methods give unbiased estimates and
have the minimum variance of all linear unbiased estimators•

However, there is no upper bound on what the variance could

be, and the presence of multicollinearity could produce large

variances. Ridge regression is a biased estimation technique
used to attain a substantial reduction in variance with an in-

crease in the stability of the coefficients. If the correlation

matrix is reduced, then the variance

vary) = o2 (X'X) -1 (7)

is improved and the stability of the coefficients is increased.

Ridge regression uses this idea.

Variables x andy in Eq. (2)must first be standardized (cen-

tered), making them dimensionless relative to an average value

x.*. x° - _j= (8)

• Yi -y
Y0 = n (9)

where i is the number of points (i = 1, 2, . . . , n) andj is the

number of parameters (,/= 1,2,..., k). The new standardized
model becomes

y* = X*3* + e (10)

and the solution for the least squares estimate b_Ls is

_b_s = (x*'x*) -1 x*_y* (11)

where X*'X* is the correlation matrix, as stated previously.

The ideal correlation matrix is the identity matrix, I. If

multicollinearity exists, high correlation values exist so the

diagonal elements do not dominate and there are large off-

diagonal values. To make the correlation matrix values ap-

proach the identity matrix, the ridge estimator is introduced:

b_ = (X*'X* + kl) -1 X*_y (12)

where I is the identity matrix and k is a value greater than or

equal to zero and is chosen by the user. The term kl adds a

positive constant to the diagonal elements of the correlation

matrix in order to make the diagonal elements dominate.
Accordingly, the inverse (X*'X* + kl)- l will have smaller ele-

ments, alleviating past difficulties created by having large
elements on the diagonals of the inverse, like large variances.

The term k is often referred to as a "shrinkage parameter"

since it "shrinks" the effects of the off-diagonal elements. The

ridge estimator _b_ equals the least squares estimatorb_s

when k = 0. It can also be easily converted back to_b R (dimen-
sioned) by a simple transformation.

Ridge regression is called a biased estimation technique

since the ridge estimators b__ are biased. Proper selection of
the shrinkage parameter minimizes the negative effect of large
bias while maintaining a ridge estimator variance that is signif-

icantly less than the least squares estimator. As the shrinkage

parameter increases, the bias of the ridge estimator increases
and its variance decreases.

A subjective method exists for choosing the shrinkage

parameter: the ridge trace. Many different values ofk are used

to compute _b_ (k), and then each _b}_ (k) is plotted versus k.
The more unstable the variable is, the faster it drops off and

stabilizes. Gradual changes of the variables over k denote sta-

bility. The shrinkage parameter k is chosen so that the esti-
mates are stable. As a rule, the smallest value of k where sta-

bility of the coefficients first appears is selected [4], [6].

V. Two Case Studies

Two applications of the ridge regression technique on the

systematic error correction model were done using Voyager 1

conical scanning (conscan) offset data. The results were com-

pared to fits obtained using an ordinary linear least squares

method. The selected parameters for the linear least squares fit

were (refer to Table 1) P1, PT, Pa, P1 _, Pl a, P14, and Pl 6. The

parameters selected for the ridge regression cases were Pa, P12,
Pin, P14, and PI6" Parameters P1 and P7 represent constant

cross-elevation and elevation offsets, respectively. In the ridge
regression process, these two terms were created by determin-

ing the cross-elevation and elevation offset biases.

The first data set uses conscan offset data collected on the

105th day of 1987. As demonstrated in Table 2, this data

exhibits a high degree of multicollinearity and would probably

benefit from the use of ridge regression. Parameters deter-

mined using the linear least squares method are listed in col-

umn 1 of Table 3. These parameters exhibit the characteris-

tics associated with multicollinearity, one of them consisting

of coefficients that are too large in magnitude (they are too

large to be realistic or practical). Shrinkage parameters were

selected in 0.005 increments and ranged from 0 to 0.10. Fig-
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ure 1 shows the use of the ridge trace for the "best" subjective

selection of ridge estimators. Stability seems to be reached at

approximately k = 0.02. The parameters for this shrinkage
parameter are listed in column 2 of Table 3. The coefficients

have diminished in value, approaching a more realistic repre-

sentation. Figure 2 compares the residual fit errors obtained in

both the linear least squares method and ridge regression. The
residual errors are defined in Eq. (5) as the difference between

the actual and the fitted pointing offsets. The signatures for

both sets of residual errors are similar, indicating incomplete-

ness in the model itself, but the average residual offset for the

ridge regression case is nearly zero, and the standard deviations

are similar (approximately 0.9 mdeg).

The above example demonstrated how ridge regression can

be used to obtain more realistic parameters and fewer overall

fitting errors (average error approaching zero). Multicollinear-

ity also causes the parameters to be unstable. Conscan offset

data collected from Voyager 1 tracks on the 105th and 106th

days should yield similar results. No changes were made to any

part of the antenna mechaniaal subsystem between these two

consecutive tracking sessions (for example, the same a priori

systematic error correction table and autocollimators were

employed in both cases), yet the parameters determined using

the linear least squares fitting method (listed in columns 1 and
3 of Table 3) seem to indicate otherwise. The parameters not

only differ in sign, but also differ radically in magnitude.

Parameters determined using ridge regression (columns 2 and

4 of Table 3) are in closer agreement in both magnitude (off

by a small factor-3 or 4-rather than 10 or 20) and sign, and

also yield similar overall fits (same average and standard

deviation).

VI. Conclusion

The ridge regression technique was shown to be useful in

minimizing the effects of multicollinearity. For the two exam-

pies given, it generated stable coefficients for similar sets of

data, provided coefficients that were more realistic in magni-

tude, and gave an overall fit with average residual errors near

zero. Although these are good results in terms of coefficient

characteristics, the overall fitting results using ridge regression

were no better than the linear least squares results since the

signatures resulting from the two methods exhibited analogous

trends. A technique such as variable selection or prediction

may be needed in order to get a more optimal model and a

better parameter selection procedure. In any case, the prob-
lem of multicollinearity must still be addressed and resolved.
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Table 1. Systematic pointing error sources and model terms

Error source Model function

Cross-elevation error Elevation error

Az collimation P1 -

Az encoder fixed offset P2 cos (el) -

Az/el skew P3 sin (el) -

Az axis tilt P4 sin (el) cos (az) -P4 sin (az)

Az axis tilt Ps sin (el) sin (az) Ps cos (az)

E1 encoder fixed offset - P7

Gravitational flexure - P8 cos (el)

Residual refraction - P9 :cot (el)

Az encoder scale error P10 (az/360) cos (el) -

Cross-declination error Declination error

HA/dec axis skew -P11 sin (dec) -

HA axis tilt P12 sin (HA) sin (dec) PI2 cos (HA)

HA axis tilt -P13 cos (HA) sin (dec) PI3 sin (HA)

HA feed offset -PI4 -

Gravitational flexure PI 5 cos (p) cos (el) -P1S sin (p) cos (el)

Declination feed offset - P_t 6

Gravitational flexure PIT sin (p) cos (el) -

Gravitational flexure - -PI 8 cos (t9) cos (el)

Gravitational flexure -P19 sin (el) -

Gravitational flexure - P2o sin (el)

HA encoder bias P21 cos (dec) -

Note: (1) Uppercase P refers to parameter value; lowercase p refers to paralectic angle.

(2) Az = azimuth angle; el = elevation angle; dec = declination angle; HA = hour angle.
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Table 2. Sample correlation matrix and variance inflation factors (for Voyager 1 conscan
offset data from 105th day of 1987)

Correlation matrix VIF

Variable 8 12 13 14 16

8 1.0000 0.8653 -0.9911 -0.9954 0.9937 747.6

12 0.8653 1.0000 -0.8624 -0.8690 0.8994 103.9

13 -0.9911 -0.8624 1.0000 0.9981 -0.9959 2783.1

14 -0.9954 -0.8690 0.9981 1.0000 -0.9966 929.0

16 0.9937 0.8994 -0.9959 -0.9966 1.0000 4377.6

Table 3. Model parameters for two Voyager 1 conscan offset data sets (105th and 106th days of
1987) using linear least squares and ridge regression (units are in millidegrees)

Day 105 Day 106

Parameter Linear Linear
(P) least Ridge least Ridge

regression regression
squares squares
(1) (2) (3) (4)

1 --451.93 24.08* -0.55 18.68"

7 -141.18 29.58* 17.86 17.13"

8 -271.78 -13.45 -27.22 -29.11

12 -114.05 4.28 1.40 1.34

13 240.03 -4.10 -0.65 -17.24

14 -557.56 4.85 6.19 15.26

16 103.29 0.25 0.49 0.89

*Ridge regression parameters P1 and P7 are created by determining the cross-elevation and elevation
biases.
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Fig. 1. Ridge trace for con_,an offset data from • Voyager 1 tre©k
collected on 105th day of 1987 shows parameters reaching stability
st approximately k = 0.02
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Fig. 2. Comparison of residual pointing errors (difference between

actual and fitted offsets) using the linear least squares and ridge
regression for data collected on 105th day of 1987
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